

NEbraskaCERT Cyber Security Forum

July 16, 2003 Security Assessment Methodologies

Stephen M. Nugen, CISSP

Presenter

Steve Nugen

 Affiliations: CISSP, NEbraskaCERT, NuGenSoft, CSM, InfraGard, etc.

- Contact
 - -smnugen@nugensoft.com
 - -402.505.7691

 Style: Talks too fast, mumbles; but never offended if asked to slow down or repeat something

Scope of Presentation

Includes

- Security assessment methodology topics
- Content from multiple sources, selected and modified according to presenter's prejudices
- Presenter's own methods

Structure

Part-1: Context: Terms, etc.

– Part-2: Methodology

Part-3: Some discovery activities (time permitting)

Part-1: Terms and definitions

CSF 2003-07-16 **4**

Terms

Different experts use different terms

- Some attempts being made to distinguish between them, common understandings still evolving
- A snapshot...

Penetration Tests

- Aka Penetration Analysis, Pen Test, Ethical Hacking, White Hat Hacking, Red Team, Tiger Team
- Test team plays role of hostile external attacker
- Done externally to the organization using public Internet connections
- Probe networks and devices to identify vulnerabilities that could be remotely exploited

Penetration Tests cont'd

- Oftentimes covert
 - Management authorized
 - No notification to IT staff...
 - Zero knowledge (no inside knowledge, no support)
- May include testing the organization's capability to detect and react to penetration activities
- May include social engineering
- May not be comprehensive
 - Like attacker, only need to find one good vulnerability
 - Sometimes a vivid wake-up call for management

CSF 2003-07-16

Audits

- Independent team
- Overt
 - Coordinated with organization
 - Full-knowledge and organizational support, including interviews
- Mostly internal
- Measure current practices/implementations against some set of standards
 - External standards defined by government, business partners, etc.
 - Organization's own policies and procedures
- May include an evaluation of the standards themselves
- May include physical security

Assessments

- Aka security diagnostic
- Internal or external team
- Test team assumes multiple roles, including insiders
- Overt
 - Full cooperation of organization, participation as required
 - Full-knowledge, including sensitive knowledge (network diagrams, etc.)
- External and internal access
- More comprehensive than penetration tests
 - Goal is to find all the most-critical vulnerabilities so that the associated risk can be managed

Formal verifications

- Ideal

- Complete and convincing mathematical argument that proves the absence of vulnerabilities
- Preconditions specify constraints on the system state when software executes
- Postconditions specify the effect of executing the software
- Trusted product verification
 - Compares two levels of system specification for proper correspondence
 - Ex: Security policy model to top-level specification
 - Ex: Top-level specification to source code
 - Ex: Source code to object code

 Common practice: Combinations, tailored to organizational requirements

CSF 2003-07-16 10

Motivations

- Part of the security process
 - Between awareness and countermeasures
 - Periodic evaluations in a changing environment
 - Changing assets
 - Changing threats
- Component of risk management
 - Identification
 - Analysis (likelihood of compromise, cost of compromise)
 - Mitigation
 - Informed acceptance

CSF 2003-07-16 1

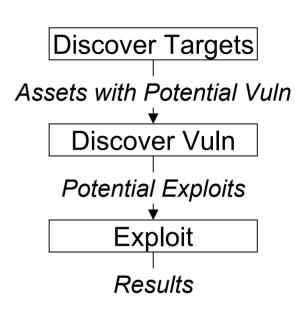
Motivations cont'd

Goals

- Avoid the consequences of misuse/compromise
 - Discover weaknesses before they are exploited
 - Measure how well the organization resists misuse/compromise
- Discover actual performance against what the organization believes it has implemented
 - Analogy: Using an proofreader to detect mistakes not visible to the author
 - Universal finding: Discovering protocols, services, etc. that were not thought present by Exec/IT management
 - Common finding: Key restrictions not enforced or monitored by <u>technical</u> means

Motivations cont'd

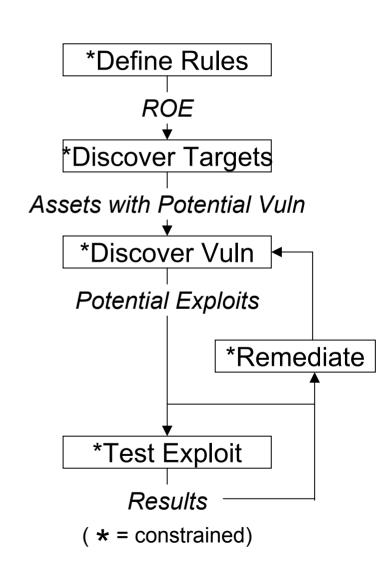
Goals cont'd


- Evaluate the actual system for compliance with plans,
 policies, etc. defined by the organization or others (audit)
- Use a methodology/process which is repeatable, supporting
 - Validation, confidence
 - Re-use

Constraints

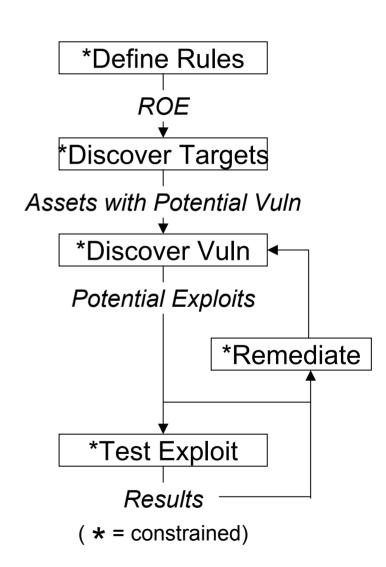
True Attacks

- Not constrained by need to maintain business continuity
- Success: Discovery and exploitation of any <u>single</u> vulnerability



Constraints cont'd

Ethical Discovery


- Needs to discover same
 vulnerabilities as unconstrained
 malicious actor
- Constrained by need to maintain
 - Business continuity
 - Availability, confidentiality, and integrity of information and information assets
 - Good records of activities and findings

Constraints cont'd

- Ethical Discovery cont'd
 - Ideal success: Discovery and remediation of <u>every</u> vulnerability
 - Not possible
 - Testing only proves the existence of vulnerabilities, not their absence
 - Realistic success: Discovery and mitigation of most critical vulnerabilities

Part-2: Methodologies

CSF 2003-07-16 17

Methodologies

- Some defined formally, such as
 - Flaw Hypothesis Methodology (FHM)
 - Attack Tree (AT) Methodology
 - InfoSec Assessment Methodology (IAM)
- Some defined less formally by vendors and best practices

- Development continues
 - Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE)
 - Others... research institutions, vendors

Knowledge

Three approaches with respect to how much insider knowledge provided to test team: Zero, Partial, Full

Zero Knowledge

- Aka Black Box
- Testers not given any company-private information about target networks and systems
- Most realistic simulation of external intrusion
- Tester not biased by security architecture
- Requires independent testers
- Takes longer, costs more

19

Knowledge cont'd

Full Knowledge

- Aka Crystal box
- Testers provided with network diagrams, system configurations, etc.
- Simulates internal attacks
- Quicker, costs less
- Coordinated tests less likely to harm system
- Testers can be employees or independent

Partial Knowledge

– More than zero, less than full...

Flaw Hypothesis Methodology

Overview

- System analysis and penetration techniques
- Specifications and documentation for the system are analyzed
- Flaws in the system are hypothesized
- Hypothesized flaws prioritized based on
 - Probability that flaw actually exists
 - Ease and impact of exploiting the flaw
- Prioritized list used to direct penetration attack

InfoSec Assessment Methodology

IAM: InfoSec Assessment Methodology

Developed by NSA in response to PDD-63

- Phased approach
 - Pre-Assessment
 - On-Site Visit
 - Post-Assessment

CSF 2003-07-16

IAM cont'd

Addresses 18 areas

InfoSec Documentation

Identification/Authentication

Session Controls

Telecommunications

Virus Protection

Maintenance

Back-ups

Media Sanitation/Disposal

Personnel Security

Roles and Responsibilities

Account Management

External Connectivity

Auditing

Contingency Planning

Configuration Management

Labeling

Physical Environment

Training and Awareness

Training...

OCTAVE

Context

- OCTAVE: Operationally Critical Threat, Asset, and Vulnerability Evaluation
- Developed by SEI (Software Engineering Institute at Carnegie Mellon University)
- Funded by
 - U.S. Department of Defense
 - U.S. Department of State
- Two flavors
 - OCTAVE: For large-scale organizations
 - OCTAVE-S: For small organizations (still under development)
- -Src: CERT (www.cert.org)

Motivation

- Observed deficiencies in evaluations
 - Technology-only focused
 - Conducted without site's direct participation
 - Precipitated by an event (reactive rather than proactive)
 - Using undefined or inconsistent criteria

Need

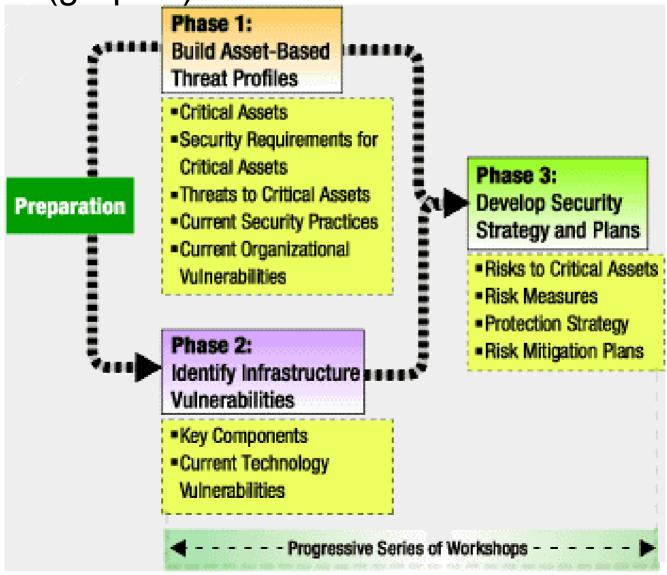
- Expand the organizational involvement beyond IT
- Include security policies, practices, procedures
- Be proactive rather than reactive
- Provide a foundation for continuous security improvement

CSF 2003-07-16 25

Philosophy

- Cannot mitigate all risks... cannot prevent all determined, skilled incursions
- Budget and other resources limited
- So, need to focus limited resources on ensuring the survivability of the enterprise

CSF 2003-07-16


Approach

- Uses organization's own expertise and resources, not outsourced
 - Organization self-directs the assessment
- Full-knowledge
- Uses a workshop-based approach for gathering information and making decisions
 - At least 12 workshops, each a half or full-day
 - Durations vary from few weeks to more than 6-months depending on scope and scheduling complications
- Organizations tailor the OCTAVE approach to their own needs

CSF 2003-07-16 27

Phases (graphic)

CSF 2003-07-16 28

Phases cont'd

- Preparation
 - Senior management sponsorship
 - Selecting team members
 - Training
 - Planning: scope, etc.
- Phase-1: Organizational view
 - Identify organization's self-knowledge of its assets in terms of
 - Criticality
 - Threats
 - Security requirements
 - What organization is currently doing to protect those assets
 - · Includes senior management, operational area, and staff knowledge

CSF 2003-07-16 Build asset-based threat profiles

Phases cont'd

- Phase-2: Technological View
 - Identify key components of shared information infrastructure
 - Evaluate key components for technology vulnerabilities that could be exploited
- Phase-3: Strategy and Plan Development
 - Analyze information collected/generated by Phase-1 and Phase-2
 - Develop protection strategy. including
 - Organizational direction
 - Mitigation plans to reduce risk
 - Near-term actions

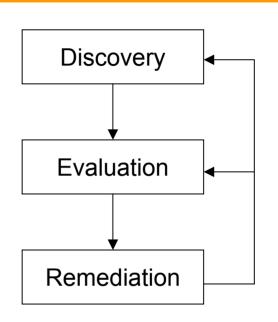
- Uses catalogs of information
 - Practices: collection of good practices
 - Used in Phase-1 as a benchmark to compare current practices against
 - Used in Phase-3 to develop organization's protection strategy
 - Threat Profile: range of threats organizations need to consider
 - Used at the end of Phase-1
 - Vulnerabilities: collection of vulnerabilities based on platform and application
 - Used in Phase-2
 - OCTAVE does not include tools

OCTAVE licensing

- Not required for internal use
- License from SEI required for external users, including
 - Individual advisors/trainers
 - Transition partners: organizations that help other organizations with OCTAVE
 - Developers of derivatives or automated tools supporting **OCTAVE**

32

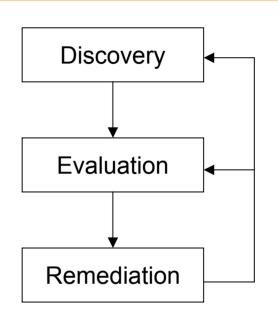
Process


- Presenter's viewpoint
 - -With
 - Credit to multiple sources
 - Blame to none
 - Unconstrained by cost and schedule...
- Overall process defined by the intersection of
 - Phase (e.g., discovery, evaluation, remediation)
 - Role (outsider, associate, insider)
 - Scope (e.g., subnet-x, location-y)
 - Activity (planning, collection, analysis, reporting)

Process cont

Phases

- Discover potential targets of misuse
 - Information
 - Information assets
- Discover vulnerabilities in those potential targets
 - Possible exploits
 - Differences in observed performance versus
 - Expected performance
 - Required/specified performance
- Evaluate vulnerabilities
 - Confirm/demonstrate the existence of vulnerability
 - May include controlled intrusions, exploits

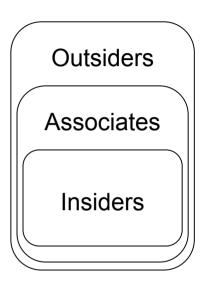

Process cont

Phases cont'd

- Remediation... from viewpoint of security diagnostics:
 - Does include recommendations to reduce risk
 - Does not include corrective measures

 After remediation, may repeat subset of Evaluation and Discovery phases to measure the effectiveness of the corrective measures

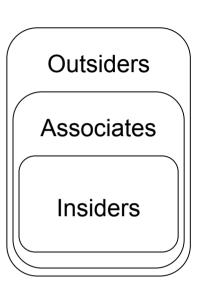
Process cont



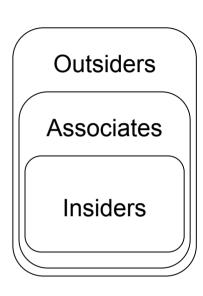
Roles

Defined by access and insider knowledge

Outsiders


- Internet access to company information and assets: Yes
- Physical access to company facilities, and networks: No
- Employee account and/or knowledge: No
- Examples
 - Anyone, anywhere, anytime
 - Script kiddies ranging from curious to malicious
 - Expert hackers motivated by recognition, hactivism, money

Roles cont'd


- Associates
 - Internet access to company information and assets: Yes
 - Physical access to company facilities, and networks: Yes
 - Employee account and/or knowledge: No
 - Specified by some as external intruder with physical access
 - Examples
 - Outsourced cleaning, security, maintenance, service staff, etc.
 - Short-term visitors, vendors, consultants, temporary employees
 - Any outsider who has compromised any client or server inside the organization

Roles cont'd

- -Insiders
 - Internet access to company information and assets: Yes
 - Physical access to company facilities, and networks: Yes
 - Employee account and/or knowledge: Yes
 - Examples
 - Employees... users, manager, system administrators
 - Longer-term visitors, vendors, consultants, temporary employees
 - Ex-employee with Associate access (directly or indirectly via compromised client or server)

- Scope defined by
 - Networks, subnets, domains, etc.
 - Facility locations
 - -And, so forth
 - Constraints
 - Ex: Network infrastructure only
 - Ex: No Web Applications
 - Ex: No Denial of Service

Activities include

- Planning
 - Rules of Engagement
 - Success criteria
 - Configuring systems and tools for
 - Collection and analysis
 - Secure storage of sensitive information
 - Research specific to organization's assets
- Data collection
 - External, Internal
 - May be witnessed
 - May be scheduled outside of production

Activities include

- Analysis
 - Common: One hour of collection requires 2-6 hours of analysis
- Reporting
 - Executive summary for CxO level
 - Management report for IT Directors
 - Technical report for system/network administrators

Tools Source

Opinions differ...

- Commercial
 - Include technical support
 - May have lower probability of hidden harm
 - Not what hackers use
 - -Costly
- Freeware (including Open Source and non-sourced freeware)
 - Useful tool may include an unknown malicious component
 - Closer match to hacker attacks
 - Free

Part-3: Some Discovery Activities

Planning: Rules of Engagement

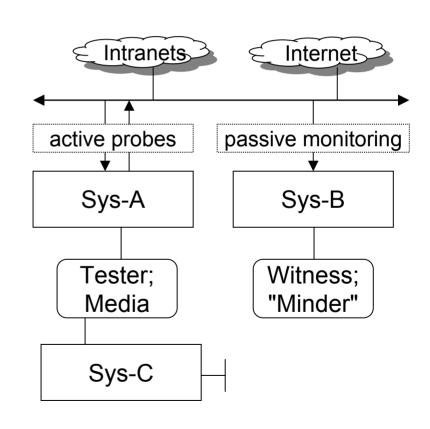
Overview

- Aka ROE, Rules of Behavior
- Outlines the framework for external and internal testing
- Usual goals... all of them simultaneous
 - Minimize impact to operations
 - Maximize test effectiveness (minimize cost)

Includes

- Identifying the scope of the assessment in terms of
 - Which networks... which systems
 - What kinds of tests... DoS for example?
 - Shared hosting environment?
- What process to use if evidence of previous attack discovered

Planning: ROE cont'd


- Includes cont'd
 - Points of contact
 - Witnesses
 - Who does testing
 - Minder/Witness/Observer
 - Criteria for success
 - How work products are secured
 - May include
 - Formal release stating testing organization will be held harmless and not not liable for unintentional
 - Disruption to operations... e.g., interruptions in service
 - Loss or damage to information and/or information resources

Discovery: Collection

Technical collection may require multiple systems

- Illustration
 - Sys-A: Active
 - Multiple tools
 - Networked
 - OS not hardened
 - Sys-B: Passive
 - Packet sniffer
 - Semi-networked
 - OS not hardened
 - Sys-C: Secure
 - Secure storage, analysis
 - Standalone
 - OS hardened

Discovery: Public Information

Done off-site using Internet

- Discover Domains
 - Identify all the domains registered-to/used-by target organization
 - For each domain, discover
 - Contact information
 - DNS servers
 - Query each DNS server to learn about
 - Related domains
 - Exposed servers/services (web, mail, etc.)

Discovery: Public Info cont'd

- Discover public information about the target
 - -Search engines, etc.
 - What are they saying?
 - Are they disclosing too much information with respect to security?
 - What are others saying about them?
 - Identify vendors, partners, etc.
 - Who links to them?
 - What are their employees saying?
 - Are sensitive/vulnerable file types indexed by search engines?

Discovery: Public Info cont'd

- Discover exposed (public and dmz) subnets and devices
 - Tools include ping, traceroute, IP allocation DBs, etc.
 - IPs may be allocated to hosting provider
 - Identify perimeter routers, firewalls, DMZ servers, etc.
 - Requires caution...

Discovery: External Entry Points

 Done off-site using Internet (or inside, but outside perimeter firewall)

- Use port scanners and related tools to characterize (fingerprint) each device
 - What operating system, version?
 - What services and applications are accessible?

Fingerprinting includes

- Identifying the operating system by small differences in their implementation of TCP/IP, including
 - Response to TCP control messages (RST, FIN, etc.)
 - TTL
 - Initial window size
 - And, so forth
- Retrieving login prompts for Telnet, FTP, etc to identify the vendor, version, etc.
- SNMP reads... using "Public" community string to identify vendors, model numbers, etc.

Fingerprinting cont'd

- Examining HTTP (web) servers to identify the vendor, version, tools used to generate the HTML, etc.
 - Response to HEAD and OPTIONS requests
 - Response to GET requests for specific file types
 - Meta content in returned source
- Note: Target devices/services can tweak the information they provide to deny, frustrate, or deceive this type of discovery

52

Modems

- Aka War Dialing
- Find modems connected (even if only occasionally) to
 - Workstations, servers, network
 - PBX
 - Building controls
- May require auto-dialing range of numbers to detect rogue modems
 - May be obnoxious or even illegal in some states
 - Oftentimes done during different time periods to detect occasional-use modems
 - Normal work hours
 - Nights
 - Weekends

WLANs

- Aka war driving
- External/Internal activities include
 - Discover rogue access points
 - Discover access points broadcasting their SSID
 - Evaluate WLAN communication encryption, etc.
 - Susceptibility to crack?
 - Evaluate range of access points... accessible from outside the facility?
 - Evaluate connectivity between access points and LAN
 - Where are they connected in relation to firewalls and IDS?

Web Applications

- Scope includes
 - Authentication vulnerabilities
 - Active content
 - Session hijacking
 - Information leakage (under error conditions for example)
- External/Internal activities include
 - Evaluate web server
 - Fingerprint
 - Susceptibility to vulnerabilities such as path traversal, nonstandard encodings, etc.

- Web Applications cont'd
 - External/Internal activities cont'd
 - Examine source for
 - Script languages, sources
 - Hidden forms, values
 - Client-side validation
 - Authentication methods
 - Examine session management mechanisms
 - Session cookies
 - Parameters
 - Examine persistent cookies

- Web Applications cont'd
 - Optional external/internal activities
 - Preferably done on non-production testbed environment
 - Done carefully, so not to cause unintentional DoS
 - Manipulate inputs to cause client-side errors
 - Client-side validation
 - Cross-site scripting
 - And, so forth

- Web Applications cont'd
 - Optional external/internal activities cont'd
 - Manipulate inputs to cause server-side errors
 - May require defeating client-side checks via
 - Direct GETs and POSTs
 - Tester-controlled proxy
 - Edit client-side source
 - Watch for DoS
 - Probe for meaningful error codes
 - Evaluate potential for SQL injection
 - Examine session management
 - Can use in-line proxy to manipulate session cookies, parameters, etc.

Discovery: Internal Entry Points

 Done on-site with LAN connection (or externally via VPN tunnel)

- Degree of logical access depends on the role
 - Associate: No account
 - Insider: Accounts typical of different classes of insiders

Internal Infrastructure

- Tools and activities: Similar to external discovery
- Additional activities include
 - Evaluating physical access to restricted areas
 - Fingerprint DMZ servers from inside
 - Test outbound firewall/router rules
 - Test extranets to connected partners
 - Searching all subnets via ping sweeps, etc.
 - Testing router configurations, including
 - Passwords
 - Services
 - And, so forth

Internal Infrastructure cont'd

- Additional activities cont'd
 - Packet sniffing
 - if switched, use
 - Uplink port
 - ARP poisoning
 - Identify key servers
 - Identify workstations acting as servers
 - Common findings
 - Privacy concerns
 - Unexpected (by organization staff) traffic
 - Protocols
 - Destinations
 - Servers

Windows domains

- Tools include MS resource kits, etc.
- Map domains and trust relationships
- Identify devices not in IT-controlled domains as potential targets
 - Default WORKGROUP
 - Special-purpose... marketing, building controls, etc.

62

63

Hosts (Server/Workstations)

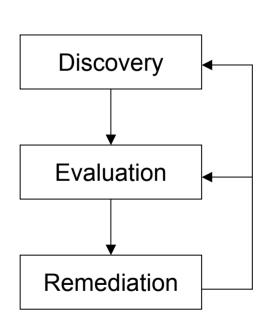
- Tools include
 - Port scanners, enumerators, etc.
 - Patch-level analyzers
 - Host-level analyzers, templates
 - Checklists...
- Evaluation areas include
 - Evaluating OS configuration (hardening)
 - Security settings for anonymous access, etc.
 - Exposed services, shares, etc.
 - Authentication policies
 - Access permissions
 - Installed utilities, applications, etc.

Hosts cont'd

- Evaluation areas cont'd
 - Browser and email client configurations
 - Proxies
 - Preview panes
 - Scripting, etc.
 - Audit configuration
 - How are the logs configured
 - Which events logged
 - Which resources monitored
 - Installed versus needed patches... for OS, Browser, Server Apps, Client Apps, etc.

Hosts cont'd

- Evaluation areas cont'd
 - User accounts
 - Dummy Administrator
 - Administrators
 - Shared local administrator
 - Local and domain accounts with administrator rights
 - Other... particularly shared accounts where the password is likely to be simple
 - Comments that may identify the password
 - Note: Password cracking may done during this activity, or as part of off-site analysis


Next Steps

- Vulnerability Discovery
 - Define (hypothesize) probable vulnerabilities, focusing on the most critical
 - Evaluate...

Remediation

Re-test

Questions

Comments

Contributions