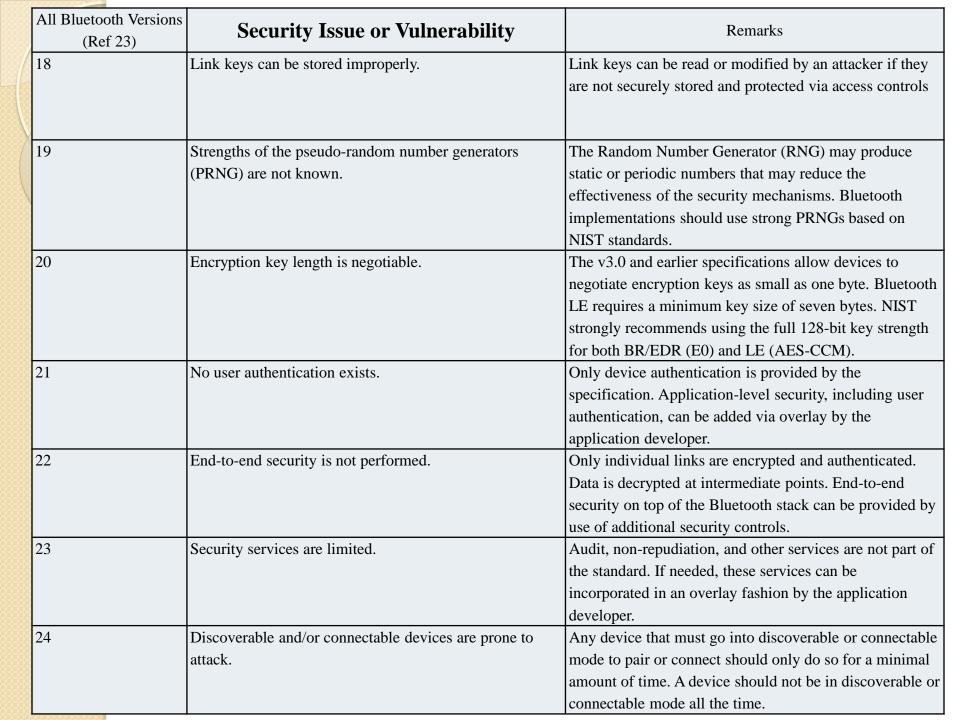
Security of Bluetooth Network Data Traffic

0

Michael Grant Williams DoD Contractor Iowa State University Ph.D. Student, IEEE Student Member


Agenda

- About the author
- Security Issue or Vulnerability
- Bluetooth Threats
- Introduction on project
- Background of project
 - Tools used
 - Test method
 - Test results
 - Mitigation solutions
- Future research
- Questions
- References

About The Author

- Employed by the Garrett Group
 - DoD contractor J84 GSIN Team
- IT Certifications
 - CISSP
 - CEH
 - Cisco CCNA / Security / Wireless
 - Microsoft MCSE / MSITP / MCP
 - CompTia A+ / Network + / Security+
 - ITIL Foundations

- Education
 - Ph.D. student at Iowa State University (ISU)
 - Computer Networking Systems / Secure and Reliable Computing
 - University of Nebraska at Omaha
 - Masters in MIS / Grad certification in Information Assurance
 - Bachelors in MIS
 - Bachelors in Banking and Finance
 - Rock Valley Community College
 - Associates in Aviation Maintenance (Airframe and Power-plant certified)

Bluetooth Threats (Ref 23)

Bluesnarfing	Enables attackers to gain access to a Bluetooth-enabled device by exploiting a firmware flaw in older
	devices. This attack forces a connection to a Bluetooth device, allowing access to data stored on the
BTLE is NA	device including the device's international mobile equipment identity (IMEI).
	Is an attack conducted on Bluetooth-enabled mobile devices, such as cell phones. An attacker initiates
Bluejacking	bluejacking by sending unsolicited messages to the user of a Bluetooth-enabled device. The actual
	messages do not cause harm to the user's device, but they may entice the user to respond in some
	fashion or add the new contact to the device's address book
Bluebugging	Exploits a security flaw in the firmware of some older Bluetooth devices to gain access to the device
	and its commands. This attack uses the commands of the device without informing the user
BTLE is NA	
Car Whisperer	Is a software tool developed by European security researchers that exploits a key implementation issue
	in hands-free Bluetooth car kits installed in automobiles. The Car Whisperer software allows an
NA within	attacker to send to or receive audio from the car kit.
Wearable Tech	
	Bluetooth is susceptible to DoS attacks. Impacts include making a device's Bluetooth interface
Denial of Service	unusable and draining the device's battery. These types of attacks are not significant and, because of
	the proximity required for Bluetooth use, can usually be easily averted by simply moving out of range.
Fuzzing Attacks	Fuzzing attacks consist of sending malformed or otherwise non-standard data to a device's Bluetooth
	radio and observing how the device reacts. If a device's operation is slowed or stopped by these
Future Research	attacks, a serious vulnerability potentially exists in the protocol stack
Project	
Pairing	PIN/Legacy Pairing (Bluetooth 2.0 and earlier) and LE Pairing (Bluetooth 4.0) are susceptible to
Eavesdropping	eavesdropping attacks. The successful eavesdropper who collects all pairing frames can determine the
	secret key(s) given sufficient time, which allows trusted device impersonation and active/passive data
Current Research	decryption.
Project	
Secure Simple	A number of techniques can force a remote device to use Just Works SSP and then exploit its lack of
Pairing Attacks	MITM protection (e.g., the attack device claims that it has no input/output capabilities). Further,
	fixed passkeys could allow an attacker to perform MITM attacks as well.

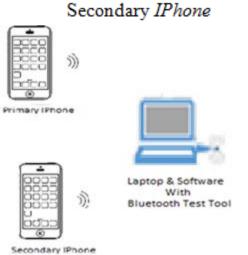
Introduction

- This research project focused on the security of the *Microsoft Band* 2 fitness tracker.
- This project is to investigation how secure data is when transmitted via *Bluetooth* to and from a wearable device.
- This project answered three research questions;
 (1) Is the pairing key transmitted in the clear
- (2) Is Bluetooth traffic transmitted in the clear
- (3) Could a Man in The Middle Attack (MITMA) take place.

Introduction

- MS Band 2 has been available for purchase since November 1, 2015, so it is relativity new
- MS Band 3 is schedule for release November 2016
- Conducted literature regarding wearable technology and various findings in device security, vulnerabilities, threats, weaknesses, and viable mitigation solutions. (see reference section)
- Similar research was done on a Fitbit by Cyr, B., Horn, W., Miao, D., & Specter, M. At Massachusetts Institute of Technology Security Analysis of Wearable Fitness Devices (Fitbit) (2014) – Ref 06.

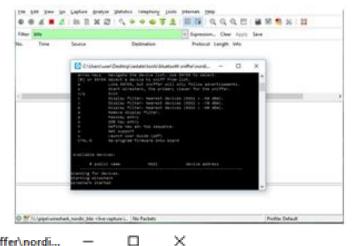
Background – Tools used


- Original Research Project
 - Kali Linux (VM Ware & Flash drive)
 - Ubertooth One (Linux only)
 - Wireshark
 - Texas Instrument
 - Bluetooth Low Energy Software Stack
 - CC2540 USB Dongle
 - Nordic Semiconductor
 - nRF Sniffer software (works in conjunction with Wireshark)
 - nRF51822 USB Dongle
 - 2 IPhones most recent IOS 9.2.1
 - MS Band 2 fitness tracker & mobile app

- Issues / Trouble with System configuration
 - Kali Linux Not operating in virtual environment
 - Kismet would operate for a few minutes then crash
 - USB Kali Linux
 - Ubertooth One using Kismet not all detecting Bluetooth devices
 - Wireshark provide invalid data due to devices not being detected
- Opted to use other tools since Kali Linux and Ubertooth was not functioning correctly
 - Texas Instrument products provided unreliable results
 - Nordic Semiconductor products was inconsistent results
 - Results to be discussed later

Research project configuration

TFW 30 6:16 PM @ + • \$ 93%
General About
Wi-Fi Address
Bluetooth 04:F7:E4:58:4A:E4
IMEI
MEID
Modern Firmware


Primary IPhone

MS Band 2 MS Band 2

Figure 4: Overview of the controlled lab environment

- Research project configuration
- **Bluetooth Device Address**
 - Public Address 0
 - Known static address
 - Random Address 0
 - Unknown dynamic address
 - Offer better security

🔇 C:\Users\user\Desktop\iastate\tools\bluetooth sniffer\nordi	-

	¢	Display filter:	Nearest devi	es (RSSI >	-50 d5m).		~			
		Display filter:	Nearest devi	es (RSSI >	-70 d8m).					
	b	Display filter:	Nearest devi	es (RSSI >	-90 d5m).					
	a	Remove display f	ilter.							
	P	Passkey entry								
		008 key entry								
	h	Define new adv h	op sequence.							
	5	Get support								
		Launch User Guid	e (pdf)							
	CTRL-R	Re-program firms	are onto boa	-d						
	Available devi	ces:								
	# publi	c name	RSSI	device	address					
	-> [X] 0				b4:a3:eb:b4					
	[]1 ***		-98 d8m	681641	4b12219f17b	public				
Sniffing device Ø										
	Starting Wireshark									
	Wireshark start	ed .								
							0			
							×.			

Diagram 4 Screenshot of Public and Random MAC Address

• Nordic Semiconductor test results

	🚄 main_lab_band-2-kphone.pcapng [Wireshark 1.12.8 (v1.12.8-0-g5b6e543 from master-1.12)] — 🛛							×				
<u>F</u> ile	<u>E</u> dit <u>V</u> iew	<u>G</u> o <u>C</u> apture	<u>Analyze</u> <u>Statistics</u>	Telephon <u>y</u>	<u>T</u> ools <u>I</u> nternals	<u>H</u> elp						
۰	•		🗙 🔁 🔍 👙	🏟 🏟		€,€,	0 🖭 1	¥ 🗹 🍋	% 🛱			
Filte	Filter: Clear Apply Save											
No.	Time	Source	Ę	estination	Prote	ocol Length	Info					^
	33 9.969	39500 slave		aster	LE	LL 60	ADV_IND					
	34 10.29	20660 Slave		aster	LE	LL 60	ADV_IND					
	35 10.61	90160 slave	1	aster	LE	LL 60	ADV_IND					
	36 10.94	13310 slave	1	aster	LE	LL 60	ADV_IND					
	37 11.29	09980 slave	1	aster	LE	LL 60	ADV_IND					
	38 11.30	29600 Slave	1	aster	LE	LL 60	CONNECT	_REQ				
	39 11.3343240 Master Slave LE LL 32 Control Opcode: LL_VERSION_IND								~			
<	< · · · · · · · · · · · · · · · · · · ·								>			
⊞ Frame 38: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface 0												
B Nordic BLE sniffer meta												
Bluetooth Low Energy Link Layer												
	Access Address: 0x8e89bed6											
±												
	Initator Address: 7f:89:c7:49:b9:3a (7f:89:c7:49:b9:3a)											
	Advertis	ing Address	: 4f:79:b4:a3:	b:b4 (4f:	79:b4:a3:eb:	b4)						
+	Link Lay	er Data										
÷	CRC: 0x5	f4255										
1												

- Show the connection request for MS Band 2
 - Random Address = 4F:79:C7:49:EB:B4 (from slide 9)
 - Advertising Address = 4F:79:C7:49:EB:B4 (above)

• Nordic Semiconductor test results

-			

П

×

main_lab_band-2-kphone-2.pcapng [Wireshark 1.12.8 (v1.12.8-0-g5b6e543 from master-1.12)]

<u>File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help</u>

▣ ◉ ∡ ■ ∡ | ⊨ ≞ X 2 | < + + + 7 7 2 | = = | 0 < 0 1 | ¥ ⊠ % | X

F	ilter:	Expression Clear Apply Save						
No	o.	Time Source	Destination	Protocol Le	ngth Info	^		
	123	9 26.6766270 Slave	Master	LE LL	32 Control Opcode: LL_VERSION_IND			
		0 26.6995380 Master	Slave	LE LL	53 L2CAP Fragment			
		1 26.7245580 Slave	Master	ATT	33 Rcvd Exchange MTU Response, Server Rx MTU: 158			
		2 26.7464930 Master	Slave	LE LL	35 L2CAP Fragment			
		3 26.7662120 Slave	Master	LE LL	26 Empty PDU			
38		4 26.7874080 Master 5 26.8067200 Slave	Slave Master	L2CAP LE LL	37 RCVd 26 Empty PDU			
68		6 26.8290450 Master	Slave	ATT	35 Rcvd Find By Type Value Response			
8	Interface Interface Image: State Image: State Image: State <td< th=""></td<>							
		ne 1241: 33 bytes on wir dic BLE sniffer meta	e (264 bits), 33 byte	s captured (264	bits) on interface 0			
8		pard: 3						
88		art packet counter: 6941						
38		lags: 0x01						
)					
		1 = CRC: OK						
	channel: 22							
	RSSI (dBm): -61							
38	event counter: 0x0001							
88		elta time (us end to sta elta time (us start to s						
88								
88 -	□ Bluetooth Low Energy Link Layer Access Address: 0xaf9aa451							
38		ata Header: 0x0702	-					
Ð	Blue	etooth L2CAP Protocol						
- E	Blu	etooth Attribute Protoco	01					
0	0000 03 06 1a 01 1d 1b 06 0a 01 16 3d 01 00 97 00 00							
0	1020 a6							
38								
) 📝 🛙	Bluetooth Attribute Protocol (btatt).	2 huter Dackets (200 - Dice	laved: 4299 (100.0%) · I	and time: 0:00 125	Profile: Default		
		Autovar Attribute Frotocol (Dtatt).	5 DVICS FOLKELS, 4239 - DISD	avea, 4235 (100,076) •1	2000 (me. 0.00.12)			
2			CL					
3			Snov	vs tra	affic is send unencrypted			

but will switch be being encrypted as shown in slide 12

Nordic Semiconductor test results

	🔍 🗢 🔿 春 🛓		0. 🖆 👪 🗏 🥵 🔆 💢	
iter:		Expression Clear	r Apply Save	
Time 4179 50.4400010 Master 4180 90.4674580 Slave 4181 90.4878900 Master	Destination Slave Master Slave	LE LL 47	וחה בשוער דיטט 7 Encrypted packet decrypted incorrectly (bad MIC) 7 Encrypted packet decrypted incorrectly (bad MIC)	
4182 90.5107460 Master	slave	LE LL 26	5 Empty PDU	
4183 90.5399310 slave 4184 90.5550100 Master 4185 90.5745760 slave 4186 90.5936850 Master 4187 90.6143120 slave	Master Slave Master Slave Master	LE LL 20 LE LL 31 LE LL 31	5 Encrypted packet decrypted incorrectly (bad MIC) 6 Empty PDU 5 Encrypted packet decrypted incorrectly (bad MIC) L Encrypted packet decrypted incorrectly (bad MIC) 5 Empty PDU	
4187 90.6143120 STave Frame 4183: 35 bytes on wire				
<pre>board: 3 uart packet counter: 10604 flags: 0x35 0 = MIC: Incorrect 1 = encrypted: Yes 0. = direction: Sla 1 = CRC: 0K channel: 4 RSSI (dBm): -65 event counter: 0x02a3 delta time (us end to star delta time (us start to sla Access Address: 0xaf9a8c56 Blatetoot Low Energy Link L Access Address: 0xaf9a8c56 Data Header: 0x090e L2CAP Fragment CRC: 0xfa07fa</pre>	ave -> Master t): 181 tart): 413 ayer			

- Shows traffic is send encrypted
 - But not decrypted properly
 - Show empty PDU

Nordic Semiconductor test results

main_lab_band-2-kphone-2.pcapng [Wireshark 1.12.8 (v1.12.8-0-g5b6e543 from master-1.12)]

ile <u>E</u>dit <u>V</u>iew <u>G</u>o <u>C</u>apture <u>A</u>nalyze <u>S</u>tatistics Telephony <u>T</u>ools <u>I</u>nternals <u>H</u>elp

00	$\textcircled{0} @ \mathscr{M} \blacksquare \mathscr{M} \boxdot \textcircled{1} \times \mathscr{D} @ \land \Leftrightarrow \diamondsuit{1} \fbox{1} \textcircled{1} \blacksquare \blacksquare @ \bigcirc @ \boxdot @ @ \boxtimes @ @ \% \textcircled{1}$							
Filter:	Filter: Clear Apply Save							
No.	Time Source	Destination	Protocol Leng	th Info	^			
1239	9 26.6766270 slave	Master	LE LL	32 Control Opcode: LL_VERSION_IND				
1240	0 26.6995380 Master	slave	LE LL	53 L2CAP Fragment				
	1 26.7245580 slave	Master	ATT	33 Rcvd Exchange MTU Response, Server Rx MTU: 158				
	2 26.7464930 Master	slave	LE LL	35 L2CAP Fragment				
	3 26.7662120 slave	Master	LE LL	26 Empty PDU				
	4 26.7874080 Master	slave	L2CAP	37 Rcvd				
	5 26.8067200 slave 5 26.8290450 Master	Master Slave	LE LL ATT	26 Empty PDU 25 Day of Find By Type Value Despense				
				35 Rcvd Find By Type Value Response	×			
	ne 1241: 33 bytes on wire (264 bits), 33 byt	es captured (264	bits) on interface O				
	lic BLE sniffer meta							
	ard: 3							
	rt packet counter: 6941							
	ags: 0x01 0 = encrypted: No							
		> Macton						
		-> Master						
	annel: 22							
	SI (dBm): -61							
	vent counter: 0x0001							
de	lta time (us end to start)	: 151						
de	lta time (us start to star	t): 439						
	tooth Low Energy Link Laye	er						
	cess Address: 0xaf9aa451							
	ta Header: 0x0702							
	C: 0x018265							
	tooth L2CAP Protocol							
■ Blue	tooth Attribute Protocol							
3								
4								
1								
	03 06 1a 01 1d 1b 06 0a 0			=				
0010	00 51 a4 9a af 02 07 03 0	0 04 00 <u>03 9e 00</u>	80 41 .Q					
0020	ao		•					
2								
🕴 👝 😻 🗖	luetooth Attribute Protocol (btatt). 3 bv	tor Dackets (200 Dise	alayed: 4200 (100.0%)	ad time 0.00 125	Profile: Default			

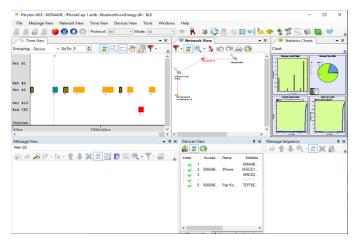
- Shows Bluetooth L2CAP Protocol
 - L2CAP is the layer that text transmitted
 - fragment packet should contain text

Background – Tools used

- Encountered issues
 - Not able to locate the plain text
 - Packets being un-encrypted then switches to being encrypted
- Revised Research Project
 - Perytons
 - Bluetooth Smart Protocol Analyzers (BSPA)
 - Hardware used with the BSPA software
 - 3 Texas Instruments (TI) CC2540 Smart USB dongles
 - I Bluegiga BLED I 12 Bluetooth Smart USB dongle for time synchronization only
 - 4 port USB hub
 - 2 IPhones most recent IOS 9.2.1
 - MS Band 2 fitness tracker & mobile app
 - Wireshark Secondary method to analyze the packets

Background – Revised Tools

- System configuration
 - Laptop Windows 10 with PBSA 5.4
 - Used to analyze the Bluetooth data traffic
 - Texas Instrument USB Dongle
 - Used capture BTLE 4.0 packets
 - Bluegiga BLED112
 - Time synchronization
 - IPhone 5
 - Most recent IOS 9.2.1



- Peryton test results
 - Shows the Bluetooth Pairing Code used

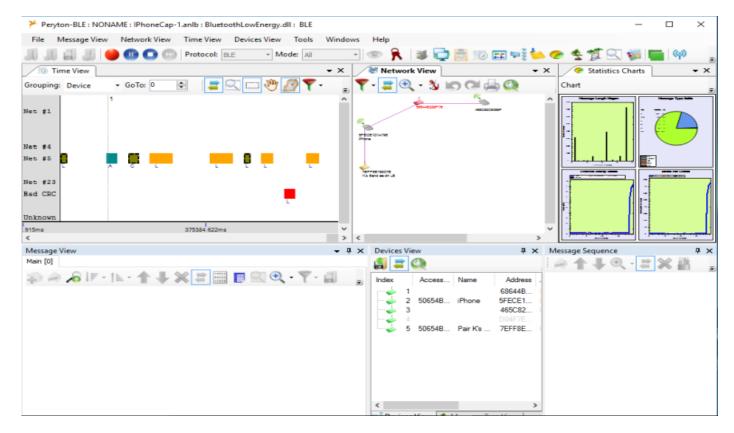
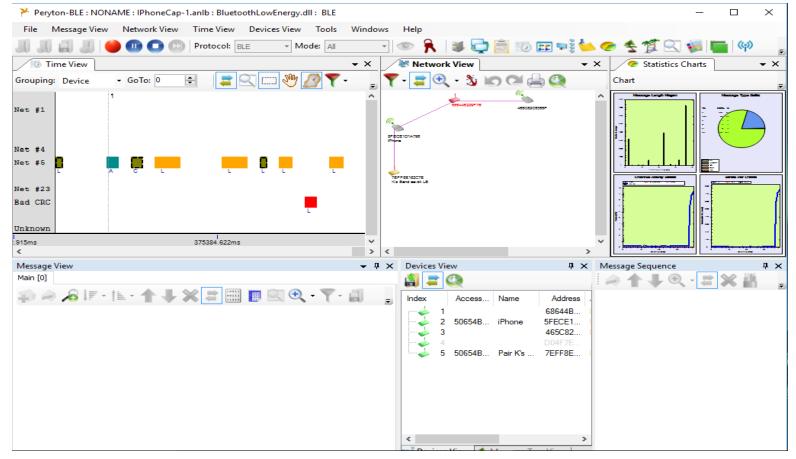


Figure 7: The pairing code of the MS Band 2

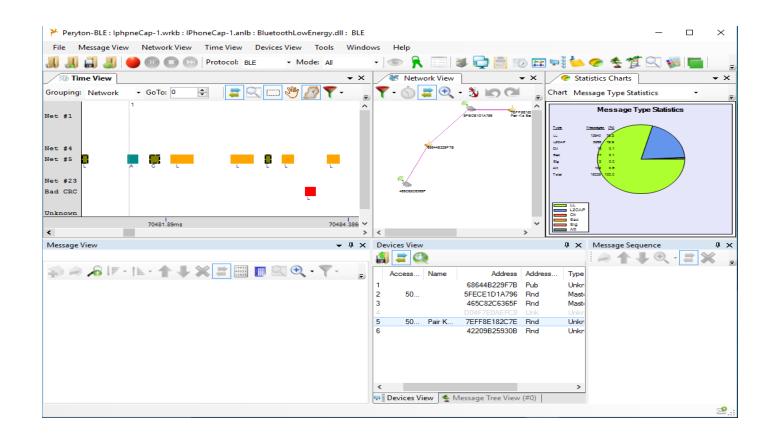

Show the two devices are paired and communicating

- Show the two devices are paired and communicating
 - Passing packets between the two devices

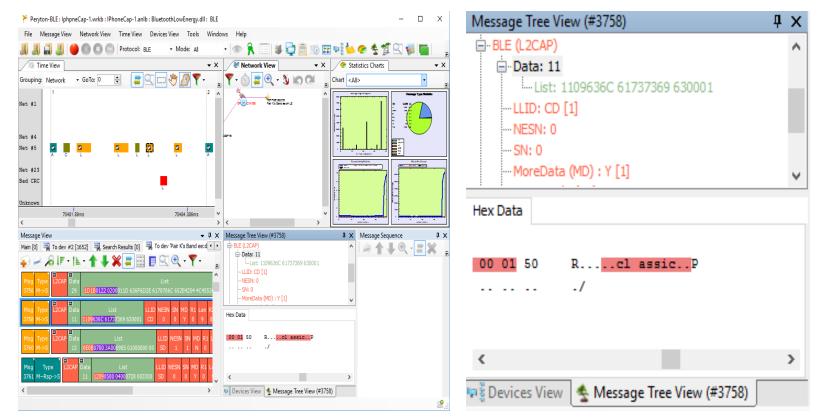
- Peryton test results
 - Show encrypted Bluetooth with L2CAP traffic
 - The red icon indicates the traffic is encrypted

- Peryton test results
 - Shows the recovered Bluetooth Pairing Code

PIN code for Access Address '50654B54' found: 299581


 Peryton software was able to recovery the Bluetooth Pairing Code with Brute-force under 20 seconds

Х


- Addition to discovering the encryption key
- Shows encryption key used to decrypt packets Keys Management (9 keys)

ł	I 🛃 🏓 -	> 🗊 📍 🚺						
				☑ For	ce Default Level			
	Counter dept	h: 20		🗹 Try All Known Key	ys 🔽 Use Keys	From File	🗹 Try	All File Keys
	Туре	Access Address	Кеу	IV	Used In File	Last Used		
	BLE_LTK	50654B54	99AA6E69F5D22A443F839A089B50DBDD	712EFDC6	True	2/19/2016 8	3:2	

- Peryton test results
 - Show decrypted Bluetooth with L2CAP traffic
 - The green icon indicates traffic is decrypted
 - The blue shaded pie is the L2CAP traffic

- Peryton test results
 - Show decrypted Bluetooth L2CAP traffic in plain text
 - The green icon indicates traffic is decrypted
 - The blue shaded pie is the L2CAP traffic

Test Results

- The test results show the following
 - The Bluetooth Pairing Code was encrypted during transmission
 - The fitness tracker data was security send over the Bluetooth network
 - Man in The Middle Attack can take place on fitness tracking devices
 - Encryption packets was successful decrypted

Mitigation solutions

- These solutions are based on Bluetooth Security Standards and Industry best practices
 - Vendors / Manufactures
 - Minimum PIN length of 8 [11]
 - Dynamic random MAC addresses [23]
 - Dynamic *Bluetooth* pairing key [23]
 - Use an advanced encryption standard counter with CBC-MAC. "AES-CCM is used in *Bluetooth* LE to provide confidentiality as well as per-packet authentication and integrity. [23]"
 - Use "[n]ew cryptographic keys called the Identity Resolving Key (IRK) and Connection Signature Resolving Key (CSRK) [23]"
 - Use Security Mode I level 3. "NIST considers this the most secure of these modes/levels and strongly recommends its use for all LE connections [23]"
 - Use maximum allowable key sizes (128b) [23]

Mitigation Solutions (Continued)

• Corporates

- Implement security awareness and training [11]
- Establish and enforce device configuration guidelines and security policies [11]
- Disable / turn off services [11]

• End Users

- Switch the Bluetooth device to use the hidden or nondiscoverable mode [11]
- Only activate Bluetooth only when it is needed. Turn on airplane mode [11]
- Disable / turn off GPS tracking location services [11]
- Ensure device firmware is up-to-date [11]
- Modify / change default configurations and passwords [11]

Future Research Project

- Conduct Fuzzing on IPhone Wi-Fi hardware
 - Analyze weakness in hardware and Firmware
- Capture Wi-Fi data between IPhone Health app web site
 - Determine if data can be decrypted over Wi-Fi
 - Determine what additional data is being send
 - Determine if GPS data can be interpreted and analyzed to determine user location

References

- Adafruit Learning System, "Introducing the Adafruit BlueFruit LE Sniffer", (2015) https://learn.adafruit.com/introducing-the-adafruitbluefruit-le-sniffer
- Austen, Kat. "The Trouble with Wearables." (2015): 22-24.
- Bluetooth, S. I. G. "Specification of the Bluetooth System: Covered Core Package version: 4.0." (2010).
- Brink, Deborah Silvia. Affecting user attitudes: Mobile devices and Bluetooth security. Diss. The University of Alabama In Huntsville, 2015.
- Bouhenguel, Redjem, Imad Mahgoub, and Mohammad Ilyas. "Bluetooth security in wearable computing applications." High Capacity
 Optical Networks and Enabling Technologies, 2008. HONET 2008. International Symposium on. IEEE, 2008
- Cyr, B., Horn, W., Miao, D., & Specter, M. (2014). Security Analysis of Wearable Fitness Devices (Fitbit). Massachusetts Institute of Technology.
- Clausing, D. I. E., Schiefer, M., Lösche, U., & Morgenstern, D. I. M. (2015). Security Evaluation of nine Fitness Trackers.
- Creasy, Hank and Knoespel. "The New Generation of Electronic Health Records: What Health Apps Know About You" Virginia Lawyer, Health Law (2015), 24-25.
- Gehrmann, Christian, and Kaisa Nyberg. "Enhancements to Bluetooth Baseband Security." Proceedings of Nordsec. Vol. 2001. 2001.
- Hale, Matthew L., et al. "Secu Wear: An Open Source, Multi-component Hardware/Software Platform for Exploring Wearable Security." *Mobile Services (MS), 2015 IEEE International Conference on*. IEEE, 2015.
- Hall, J. B. "Brush up on Bluetooth". Global Information Assurance Certification (GIAC) Security Essentials Certification (GSEC), Research Project, Version 1.4 b. (2003) 1-14
- Hassler, Susan. "You in Your Internet of Things [Spectral lines]." Spectrum, IEEE 52.4 (2015): 8-8.
- Hughes, Alan. Threat assessment of wearable technology. Diss. Utica College, 2014.
- Hunter, Philip. "Is now the time to define a mobile security policy?" Computer Fraud & Security 2007.6 (2007): 10-12.
- Jakobson, Markus, and Susanne Wetzel. "Security weaknesses in Bluetooth." Topics in Cryptology—CT-RSA 2001. Springer Berlin Heidelberg, 2001. 176-191.
- King, Christopher, Jonathan Chu, and Andrew Mellinger. "Emerging Technology Domains Risk Survey." (2015).
- Kitsos, Paraskevas, et al. "Hardware implementation of Bluetooth security." IEEE Pervasive Computing 1 (2003): 21-29.
- Li, Andrew M., and Sharon F. Terry. "Linking Personal Health Data to Genomic Research." Genetic testing and molecular biomarkers 19.1 (2015): 1-2.
- Lin, Ying-Dar, et al. "Mobile Application Security." Computer 47.6 (2014): 21-23.

References

- Migicovsky, Alex, et al. "Outsmarting Proctors with Smartwatches: A Case Study on Wearable Computing Security." Financial Cryptography and Data Security. Springer Berlin Heidelberg, 2014. 89-96.
- Niem, T. C. "Bluetooth and its inherent security issues". Global Information Assurance Certification (GIAC) Security Essentials Certification (GSEC), Research Project, Version 1.4 b. (2003) 1-29
- Nigel, Davies, et al. "Security and privacy implications of pervasive memory augmentation." Pervasive Computing, IEEE 14.1 (2015): 44-53.
- Padgette, John, Karen Scarfone, and Lily Chen. "Guide to bluetooth security." NIST Special Publication 800.121 (2012): 25.
- Paul, Greig, and James Irvine. "Privacy Implications of Wearable Health Devices." Proceedings of the 7th International Conference on Security of Information and Networks. ACM, 2014.
- Pauli, D. "10-second' theoretical hack could jog Fitbits into malware-spreading mode (Wristputer-pusher disputes claims from Fortinet)" The Register Oct 2015, (2015) <u>http://www.theregister.co.uk/2015/10/21/fitbit_hack/</u>
- Rahman, Mahmudur, Bogdan Carbunar, and Madhusudan Banik. "Fit and vulnerable: Attacks and defenses for a health monitoring device." arXiv preprint arXiv:1304.5672 (2013).
- Rahman, M., Carbunar, B., & Topkara, U. Step Towards Better Security: Attacks and Defenses for Low Power Fitness Trackers.
- Roque, Rob. "Technology Trends to Prepare for in 2015." Government Finance Review (2015).
- SANS Institute Policy Team "Bluetooth Baseline Requirements Policy" Consensus Policy Resource Community, SANS Institute, (2014) https://www.sans.org/security-resources/policies/network-security/pdf/bluetooth-baseline-requirements-policy
- Tan, Margaret, and Kathrine Aguilar Masagca. "An investigation of Bluetooth security threats." Information Science and Applications (ICISA), 2011 International Conference on. IEEE, 2011.
- Thierer, Adam D. "the internet of things and wearable technology: Addressing privacy and security concerns without derailing innovation." *Rich. JL & Tech.* 21 (2015): 6-15.
- Toorani, Mohsen. "On vulnerabilities of the security association in the IEEE 802.15. 6 standard." *arXiv preprint arXiv:1501.02601* (2015).
- Vainio, Juha T. "Bluetooth security." Department of Computer Science and Engineering, Helsinki University of Technology, Available at website http://www.niksula.cs.hut.fi/~jiitv/bluesec.html (2000).
- Xu, Y. "Swot Analysis of Domestic Market of Wearable Sports Equipment Based on Internet of Things Technology." 2015 International Conference on Artificial Intelligence and Industrial Engineering. Atlantis Press, 2015.
- Yan, Tong, Yachao Lu, and Nan Zhang. "Privacy Disclosure from Wearable Devices." Proceedings of the 2015 Workshop on Privacy-Aware Mobile Computing. ACM, 2015.
- Zhou, Wei, and Selwyn Piramuthu. "Security/privacy of wearable fitness tracking IoT devices." Information Systems and Technologies (CISTI), 2014 9th Iberian Conference on. IEEE, 2014.